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ABSTRACT

The magnetic critical point exponetft) (of one-dimensional Ising ferromagnetism was dated for one-break
configurations. In the limit of the applied mageefield (H) approaches zero and the number of sfiMjsapproach

infinity, the non — zero magnetization per partisigs obtained using Fe, Ni, CeBand EuS materials as case studies.

The calculated values of magnetic critical poinp@xent ) for Fe, Ni, CrBg and EuS at N = 100 are 0.340 £
0.042; 0.420 + 0.070; 0.368 +0.005 and 0.330 +0r@&hectively.

According to Stanely [13], the range of valuesrmgnetic exponenfl] is 0.3 — 0.5, which is in agreement with
the results obtained. The experimental valuesit€al point exponentf}) of ferromagnetic is presented in Table 10; and

is adopted from Itzykson and Drouffe [10].
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1.0 INTRODUCTION

Magnetism is an important and interesting conceptsalid state physics. In fact all materials; iasofs,
semiconductors and conductors (metals) exhibit phenomenon of magnetism. Magnetism can be cladsédie

diamagnetism, paramagnetism and ferromagnetism.

Diamagnetic materials possess no net magnetic msmétheir own origin. They do not posses magatitn in
the absence of an applied magnetic field. Whenxéermal magnetic field is applied to such matertaksir atoms acquire
magnetic moments whose direction is opposite to dfahe applied field [1]. Paramagnetic materiate made up of
atoms that posses their own magnetic moments, whiehaligned in different directions. In such a foguration the
material does not possess net macroscopic magi@tizé/hen an external field is applied, the magnetoments align in

a definite direction.

Ferromagnetic materials have atoms possessing @tmmiments that are aligned microscopically in patér
directions. In such a way, different portions oé tferromagnetic materials have net magnetizationupé volume.
Application of external magnetic field also stramgts the magnetization produced in such matei2jsThey are able to
retain a substantial amount of magnetization. Ofstmaractical and industrial applications are matsriexhibiting
ferromagnetism due to their ability to produce metgmation even in the absence of an applied fie&tromagnetism are
found useful as applications in electronic devisesh as magnetic tapes, digital computer memonnek ia ferrite

microwave devices.
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According to Wolf [3], in order to identify matelsawith an Ising — like microscopic Hamiltonian,eneeds to
understand the behaviour of individual magnetisiona crystalline environment. The basis for tiiglerstanding comes
from the early work of Van Vleck, as defined wittetadvent of paramagnetic resonance in the 195@'¢tee introduction
of the spin Hamiltonian [4]. Medelung [5] identifighat the interactions in magnetism have beenaéxgd by various
theories and models. One of these models is thg Midel, which could account for observed phenarierl — D, 2 — D
and 3 — D systems. A very important concept inoiegnetic material is the issue of phase transii@nromagnets have
spontaneous magnetization only at temperaturessgloharacteristic temperature known as the CuietpAbove the
Curie point, the spontaneous magnetization ceastt$h@ material become paramagnetic. The Curiet [mia feature of
all ferromagnetic materials and is constant fofedént materials. The thermodynamical quantitieshef material also
change on crossing the Curie point. Experimentslilite and detailed calculations have shown howtbemodynamic

properties behave when approaching the Curie jp@jnt

The study of critical phenomena both experimentafig theoretically is the determination of the agtatic law
governing the approach to a critical point. Theufoof this paper is on the calculation of magnexiponent 8) using the
1 — D Ising model over one break. The order paran{et) is a measure of the degree to which the etagmoments are

aligned throughout the crystal and is called theZield magnetization.

2.0 THEORETICAL BACKGROUND CONSIDERATION
2.1 Ising Model
The Ising model is an important paradigm becauseptures the physics of several physical systeitisshiort-

range interactions. The standard model is a sysfe3pins on a lattice with nearest neighbour irttoas.

N

H=->1; $§ -H>'S @

i=1

Where | = — 3)
i~ il
Equation 1 is a one dimensional ferromagnetic moaleére H is the external magnetic fielglid the interaction
energy between neighbouring spingS &re the spins situated at regular lattice sitesgptesents an external magnetic
field which applies to all spins on the lattice.tB& and $can independently assume either of the two vadfiés +1 and
—1. The constant J in equation 2 is called the lbogigonstant, representing the interaction betwasarest neighbours. It

is also called the exchange parameter or effeattegaction strength. |i — j| is the distance betwspin sites i and j.

In the present discussion we concentrate on thplesinversion of the model, with positive couplicgnstant J
between nearest neighbours only, and homogenedemakfield H. Also take the spins valugs=st 1, that is, dealing
with spin — % particles. Both and gcan independently assume either of the two vadfied and — 1. Our objective is to
determine the stable phases of the system in #rentddynamic limit, that is, when the number of shin- « and the
external field H- 0. In this sense, the physics of the model is dated by the interactions between nearest neigbour
rather than by the presence of the external fitle;latter only breaks the symmetry between spaistipg up (along the
field) or down (opposite to the field). The phasdshe system are characterized by the averagee valwof the total

magnetization M at a given temperature:
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mM=M, M=>'S (4)
i

From the expression for the free energy of theesysit temperature T

F=E-TS=M -TS (5)
There are two possibilities; first, that the stgtitese of the system has average magnetizationhvughcalled the

disordered phase; this phase, is favoured by tiremnterm. Second, that the stable phase of teesyhas non-zero

average magnetization, called the ordered phaisepliase is favoured by the internal energy term.

In one dimension, the nearest neighbour Ising mdde$ not exhibit a phase transition at finite terafure. This
model has no time dependent dynamics. In this otsfteis unlike the gas model and quantum meclsmuodels, in

which the Hamiltonian function or operator deteresithe equation of motion.

The equilibrium properties of this model can beidst by the method of fixed temperature. The sotuto the
zero — field, H = 0 case is considered. If the terafure T = 0, then either all zre + 1 or all ;sare —1 so that H is a

minimum, with a value
E(T=0)=-J(N-1) (6)

When T > 0, then some of thevéll be +1 and the others —1. The boundary betwekenegion and the —1 region
is called the partition point. At T = 0, there is partition point and at low temperatures, theipart points are few. The
energy of each partition point is 2J. This modehisn transformed to a model of a gas of partifomts. The number of

partition points is not constant, so its chemiaatkptial is zero.
2.3 The Magnetic Critical Point Exponent 3)

Critical point exponents describe the behaviour tiea critical point of the various quantities ofdrest at phase
transition. Examples are the exponents that descpbessure, heat capacity, susceptibility, magatitin, energy and
others. Among the critical exponents for magnetistams, are those for specific heat, magnetizationf3; isothermal
susceptibility,y; and correlation lengtly, These are not all independent, and it is posstbtterive an inequality such as:
a + 2B +y> 2; which was given by Yeomans [8]. According taTiand Gui [9] when ferromagnetic system is coneidle
a is the critical exponent of susceptibilitfy;is the critical exponent of order parametgrs the critical exponent of the
specific heat; and is the critical exponent of the magnetic field plmal with order parameter. Their experimental value

are stated as follows; = 0.104+ 0.003p = 0.325y = 1.23 andd = 5.2+ 0.15

Tian and Gui [9] also stated that experimental mhsts discovered that the critical exponents abitnat

thermodynamic quantities in various phase transstiatisfy the same scaling laws as:
a=2B+3=2 y=p(©%-1) (7

According to Itzykson and Dronffe [10], the six comnly recognized critical points exponents arg,y,0,n and

v. The definitions of the first four are given as:

Cu~ [tf"when H =0 M= [tf whenH =0
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y = [t[Y whenH =0 H-M®° whenH=0

Critical systems have at least one order paraméber order parameter is some quantity that takesvorvalues;
one above criticality and one below. For the Issggtem the order parameter is the one-dimensioaghatization of the

system.

Cleary at low temperatures in the Ising modelsplhs will try to align in the same direction. Hoxee at higher
temperature, thermal fluctuations will tend to ramize spin orientation. Experimentally it is knowrat ferromagnetic
possess a critical temperature at which the totaymatization of the system differs from zero. Terapees below the
critical temperature have a finite magnetizationerglas temperatures above the critical point have mmgnetization.
Also experimentally, it is known that critical sgats will have nearly identical critical exponerttshey have the same
physical dimension as well as the same dimensionthef order parameter. In this way, all three-dinms
ferromagnetism are the same. The ferromagnetismichwhre characterized by the existence of a speptan

magnetization, are given by:

Mo (t) = le) m(H, T) (8)

The order parameter varies as (fByherel] =

The magnetic exponerfi)is also define as: iT) = (T - TO) B (9)

That is when the external field H vanishes; the megigation M below Tis a decreasing function of the T and

vanishes at I A more natural definition of the critical pointgonent B) is defined as:

5= lim In m,(T)

e-0 In(-€) (10)

Critical point exponents are frequently determigdmeasuring the slopes of log — log plots of eipental

data, since'lHospital rule with the equation above implies that

d (Inm)

b= dince)

(11)

2.4 Partition Function Z and Magnetization M

The partition function is an unrestricted sum oftBmann factors over all accessible states, irretspe of their
energy. Hence it is generally easier to derivassiedl thermo-dynamical results using the pantitionction.

Classical and quantum statistical mechanics shat @l the thermo-dynamical properties of a systam be
expressed in terms of In Z and its partial derixegti

The magnetic partition function Z(H, T) for Isingpatel is given as:

z=>> ... > e (12)
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where each;ganges independently over the valded and there areM2terms in the summation; also t = HTk The

thermodynamic function as related to magnetizagagiven as:

Magnetization m (H, T) r% {%} =< %S > (13)
i=1

Where < > denotes ensemble average. The quant{fy; M) is called the spontaneous magnetization. Whes
non-zero the system is said to be ferromagnetidlewhen it is zero, the system is said to be pagmatic. The
magnetization m, plays the role of the order patamevhich determines the nature of the phase abodebelow the

critical temperature. While the critical exponedéscribe the behaviour of various physical quastitlose to the critical

temperature.

3.0 NUMERICAL COMPUTATION

The spins of the one-dimensional ferromagneticsisteown in figure 1, which is a simple one dimenai@arrow

shape, capable of assuming two discrete orientati@n +1 for spin up and —1 for spin down.
1 1 ! 1 ! ... N
1 2 3 4 5 6

Figure 3.1: Schematic Diagram of the Spins Using Aows

3.1 Computation for N = 3 Spins

The schematic diagram representing each stateeafytbtem for N = 3 is shown in Table 1. From theestatic
diagram there are®Zi.e. 2%) configuration states of the system. The partifiemction is given as the sum of the partition

functions of all the configuration states. There @vo nearest neighbours to theisder consideration.

S=+1 S=+1 s=-1 s=%1

Orientation Hamiltonian Orientation | Hamiltonian
-9J -9J

—— +3H —— -3H
11 4 Ll 4
-7J -7J

+H — -H
T 4 il 4
-J -J

— +H — -H
Tl 4 1Lt 4
-J -J

— -H — +H
Ll 4 it 4

Figure 3.2: Schematic Arrowed Spin Diagram for N =3

Z= {exp (%‘Jtﬂ[exp(BHt) +exp (-3Ht)]
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+ {exp (%th [exp(Ht) +exp (-Ht)]

+2 {exp (% }[exp(Ht) +exp (-Ht)] + ...

z= [exp(3Ht)]{exp (%Jtﬂ + [exp (-2H1)] { Zexp(_Tth + exp (%ﬁj}
+ [exp(-4Ht)]{ exp(%tj + exp (L:t)} + [exp (%}tﬂ [exp(-6Ht)] (14b)

Putting Z = exp (-2Ht)

—— =2 exp (-2Ht) = -2Z
T Xp (-2Ht)

Equation (14b) becomes: Z = [exp (3HY)]{€ C.Z + C,Z% + C;Z%}
where G=GC; = exp[ﬂ] andG=G =2 exp(i] + exp(ﬂ]
4 4 4

INZ=3Ht+In[G+ CZ+CZ?+CZ>+ ..]

alnz _ oz _dInz
a(Ht) a(Ht) oz

Total magnetization ra

Magnetization per particle is m = M/N and for thise

dlnZ
0z

m=%M=

Using equation (13) and equation (14)

2
M= dlnZ _1 22 C +2C,Z+ 3CyZ

0z 37 | cp+Cz+ Cypz? + CyZ?

In the limitH - 0 z - 1 and the magnetization per particle becomes

olnz olnz

m=lim 30(Ht) jim 30(Ht)

Spontaneous magnetization per particle of equéfibhis

2 C,+2C, + 3C
m:1-—z|: 1 2 3
3 |CytC +Cy +Cqg
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In order to minimize the rigorous calculation farder values of N, an approximation of one-breakasle. This
simply means a set of spins on the same side antingpupwards while the remaining spins point dewands or vice

versa or all the spins are pointing in the sameation. Any other configuration states of the systre neglected.
3.2 Computation for the General Case (2N + 1) Spins

An important point is that the number of configioatstates to be considered reduced drasticaliy 20 to 2N.
Within the above approximation from Table 3.1, #sterisk states are neglected during calculatiodstlze result is the
same as before approximation. The schematic diagfamngeneral case where (2N + 1) spins are coresidever all

configurations with one break in their orderingl®wn in Figure 3.

[ i
LU S N R A P B 111 T UL
-N-3-2-10123..N -N...-2-1 01 j... N
@) (b)

Figure 3.3: Schematic Arrowed Spin Diagram for (2N+ 1) Spins

Figure 3 (a) is a situation where the i - th smfisf mid-way and j = O, thus there are (N + 1) spdwinting
upwards while N spins point downward. Figure3(ba isituation where the j-th spin is not equal tmzéence: upwards

spins=N+j+1and downwards spins = N — jhstiat the effective magnetic field effect is giveen
NH=[N+j+1)]-(N-)IH=(2j + H (22)
The partition function of this system is given as:
£ (B + 0B )t NjHt
z= TN (23)
j=-N
Where E is the energy of the system without any break,fds the change in energy.
Ojo [11], showed that forAE; = 2JmiR; (24)

And defined Ras:

_ (N+1)* -
Rj =R, +In {W:l (25)

Where R=1In (N + 1) + 0.8877

Using equations (22) and (24) in equation (23) then

N
7= ont ZE(ZJmZ + Rj) €(2j+1)H (26)
i=-N

The magnetization per particle of the system frayuagion (26) is given as:
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aumr; (2*1) ey
1 o0lnZz j="n (2N+1)

m = (27)
N
(N+1) oz z 2HR;
j=-N
and in the limit H— 0
N ) .
z 2R (2j+1) '
e~ (2N +1)
m= N (28)
Z fthmZRj
j=-N
From equation (25)
j 2
R=R+In|{1-|——— =Ry+tIn(1+ 29
=R ( p J Ro+In (1+y) (29)
j 2
Where y= 30
Y ( N+ 1] (30)
In equation (28), putting
X = 2Jtnf (31)
Then m = q/? (32)
Where = — = —— 33
q 23t 2] (33)
Equation (28) can be rewritten as
N M .
Z ([Roﬂn(l—yi)] M
A~ (2N +)
m = v (34)
z ([R0+In(l—yi)]x
j=-N
Z (ZJ+1) ( _ )X
~ L (2N+) !
m? = - 20 if j=0 (35)

The required solutions are the values of m thalt saitisfy both equations (32) and (35). A compuyergram in

C™ language was used to provide the solutions.
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4.0 RESULTS AND DISCUSSIONS
From section 3 above the following can be deduced:
e As Xincreases, tincreases and T decreases
e Asqincreasest decreases and T increases

That is G O % oT (36)

According to Ojo [12] the critical temperature fohich the critical magnetization;s 0 is given by:
KgTc=1.47] (37)

Using equations 33 and 37

@ = Sele 0735 38
23

Using equation (36) together with the definitioneafponents:

q2 'q(Z:.., T_Tc
gs T,

c

0=

(39)

dinm
B_

" din (-0 (40)

B is calculated as the shape of the graph d In gainst d In (E1); which is the same as graph of (In X) against |In
|d]]- Results for different elements for n = 100 and N)OO are presented in Tables 1 — 8.

Table 4.1: Results of Fe when N = 100
T X le] [In X] |In [e]|

100 0.0003480 | 0.9041 7.9632 0.1008
200 0.0001740| 0.8082 8.6563 0.2129
300 0.0001160 | 0.7124 9.0618 0.3392
400 0.0000870 | 0.6165 9.3494 0.4837
500 | 0.00000696| 0.5206 9.5726 0.6527

600 | 5.8009x 10° | 0.4247| 9.7549| 0.8563
700 | 4.9722x 10° | 0.3289| 9.9091| 1.112
800 | 4.3507x 10° | 0.2330| 10.0426 1.456
900 | 3.8673x 10° | 0.1371| 10.1604 1.987
1000 | 3.4805x 10° | 0.0412| 10.2657 3.188

N O ooF
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Table 4.2: Results of Fe when N = 1000

T X €] [In X] [In [g]]
100 | 3.543x 10° | 0.9041| 12.5506| 0.1008
200 | 1.771x 10° | 0.8082| 13.2438| 0.212P
300 | 1.181x 10° | 0.7124| 13.6492| 0.339p
400 | 8.860x 10’ | 0.6165| 13.9369| 0.483f7
500 | 7.090x 10 | 0.5206| 14.1601| 0.6527
600 | 5.900x 107 | 0.4247| 14.3424| 0.85683
700 | 5.060x 107 | 0.3289| 14.4965| 1.1121
800 | 4.430x 107 | 0.2330| 14.6301| 1.4568
900 | 3.940x 107 | 0.1371| 14.7479| 1.987D
1000 | 3.540x 10’ | 0.0412| 14.8532| 3.1887

Table 4.3: Results of Ni when N =100

T X le] [In X| |In [g]|
100 | 2.1112x 10 | 0.8406| 8.4631| 0.173F
200 | 1.0556x 10* | 0.6811| 9.1562| 0.384D
300 | 7.0374x 10° | 0.5217| 9.5617| 0.650F
400 | 5.2780x 10° | 0.3624 | 9.8494| 1.0154
500 | 4.2224x 10° | 0.2028| 10.0725 1.595p
600 | 3.5187x 10° | 0.0434| 10.2548 3.138D

Table 4.4: Results of Ni when N = 1000

T X €] [InX] | |In ]
100 | 2.130x 10° | 0.8406| 13.0592 0.173f7
200 | 1.065x 10° | 0.6811| 13.7524| 0.384p
300 | 7.100x 107 | 0.5217| 14.1578| 0.6507
400 | 5.330x 107 | 0.3624| 14.4455] 1.0154
500 | 4.260x 107 | 0.2028| 14.6687| 1.5955
600 | 3.550x 107 | 0.0434| 14.8510| 3.138D

Table 4.5: Results of CrBgwhen N = 100

T X lel In X|_| |infell

9 1.2178x 10% | 0.7236 | 9.0133| 0.3235
12 | 9.1333x10° | 0.6314 | 9.3010 0.459}
15 | 7.3066x 10° | 0.5393 | 9.5241| 0.6175
18 | 6.0889x 10° | 0.4472 | 9.7065| 0.8048
21 5.219x 10° | 0.3550 | 9.8606| 1.0355
24 4566x 10° | 0.2629 | 9.9941| 1.3360
27 | 4.0592x 10° | 0.1708 | 10.1119 1.767H
30 | 3.6533x10° | 0.0786| 10.2173 2.5431

D.A. Ajadi & O. M. Oni
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Table 4.6: Results of CrBg when N = 1000

T X €] [In X[ | [In|e]]

9 | 1.229x 10° | 0.7236| 13.6095 0.323
12| 9.220x 10’ | 0.6314| 13.8971 0.459
15| 7.370x 10’ | 0.5393| 14.1203 0.617
18| 6.144x 10’ | 0.4472| 14.3026 0.804
21| 5.270x 10’ | 0.3550| 14.4568 1.035
24| 4.617x 107 | 0.2629| 14.5903 1.336
27| 4.100x 107 | 0.1708| 14.7081 1.767
30| 3.690x 107 | 0.0786| 14.8134 2.543

= OT © O & O1 J O

Table 4.7: Results of EuS when N = 100

X le] [In X | [In [e]|
0.2567x 10° | 0.6364| 9.2876| 0.452
7.9340x 10° | 0.5758| 9.4417| 0.552
6.9426x 10° | 0.5152| 9.5253| 0.663
6.1712x 10° | 0.4545| 9.6930| 0.788
5.5540x 10° | 0.3939| 9.7984| 0.931
5.0491x 10° | 0.3333| 9.8937| 1.098
4.6284x 10° | 0.2727| 9.9807| 1.299
13| 4.2723x10° | 0.2121| 10.0608 1.550
14 | 3.9672x 10° | 0.1515| 10.1349 1.887
15| 3.7027x 10° | 0.0909| 10.2039 2.397
16 | 3.4713x10° | 0.0303| 10.2684 3.964

[l
NHO@oo\lmﬂ

O = 00 WO O Ot — O

Table 4.8: Results of EuS when N = 1000

X ] [In X | [In [e]]
9.340x 10 | 0.6364| 13.8837 0.452
8.010x 10’ | 0.5758| 14.0379 0.552
7.010x 107 | 0.5152| 14.1714 0.663
6.230x 10’ | 0.4545| 14.2892 0.788
5.600x 107 | 0.3939| 14.3945 0.931
5.090x 107 | 0.3333| 14.4898 1.098
4.670x 107 | 0.2727| 14.5769 1.299
13| 4.310x10° | 0.2121| 14.6569 1.550
14| 4.000x 10" | 0.1515| 14.7310 1.887
15| 3.740x 107 | 0.0909| 14.8000 2.397
16 | 3.500x 107 | 0.0303| 14.8645 3.965

el Ll
N,_\o«)oo\lmﬂ

W= Oy W Oy Oy U r— O

The tables obtained from the theoretical calcutetiovere used to plot the following graphs, with fheed

equations showing coefficients of determinatiorgiag from 0.9 to 1.0
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10 + /‘*_._—k—é
8 4

= y=0.6825In(x) + 9.7399

=] R2 = 0.964

lin|ef |

Figure 4.1: Graph of | In [x| | Against |Ing| | for Fe when N = 100

16 -
12 -
— 10 - _
= y=0.6825In(x) + 14.327
= 8 - R?=0.964
= 5
4 -
2 -
G T T T 1
0 1 2 3 4
ln[gf |

Figure 4.2: Graph of | In [x| | against |Ing] | for Fe when N = 1000

12

1ﬂ_ /*_k_‘ —“
8

y=0.6296In(x) + 9.7182

¥ g 2=().950
8
4 -
2
ﬂ 1 1 1 1
0 1 2 3 4
In g |

Figure 4.3: Graph of | In |x| | against |Ing] | for Ni when N = 100
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155 -
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— V= 0.6257In(x) + 14.314
ET R==0.959
=
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l[Inje] |

Figure 4.4: Graph of | In |x| | against |Ing] | for Ni when N = 1000
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Figure 4.5: Graph of | In |x| | against |Ing] | for CrBr; when N = 100
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Figure 4.6: Graph of | In [x| | against |Ing] | for CrBr; when N

1000
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Figure 4.7: Graph of | In |x| | against |Ing] | for EuUS when N = 100
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Figure 4.8: Graph of | In |x| | against |Ing] | for EuS when N = 1000

5.0 SUMMARY AND CONCLUSIONS

Table 5.1: Summary of the Results Obtained

n Curie Experimental | B- when | B- when
el Temperature (K) vglues off3 ﬁl =100 El= 1000 Average
Fe 1043 0.340+ 0.400 | 0.320 0.330 0.325
Ni 627.2 0.422+0.070 | 0.450 0.370 0.410
CrBr; 32.56 0.368+ 0.005| 0.375 0.378 0.376
EuS 16.50 0.330+ 0.015| 0.350 0.345 0.347

According to Stanely [13], the range of valuesrmgnetic exponenfl] is 0.3 — 0.5, which is in agreement with
the results obtained. The experimental valuesiti€al point exponentf) of ferromagnetic is presented in Table 10; and

is adopted from Itzykson and Drouffe [10].
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Table 10: Experimental Values adopted from Itzyksorand Drouffe.

EXPT MFT | ISING —D | HEIS
0.32-0.39] 0.50 0.31 0.30

Where EXPT is the experimental values from a varidtsystems; MFT is the Mean Field theory valu&sNG

is the Ising Model values in the D — dimension wuaed; and HEIS is the values for Classical Hdisem Model
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